
Deployment of Linear Programming for Creating

Cybersecurity Proles

1st Michal Stejskal
Department of Telecommunications

Brno University of Technology

Brno, Czech Republic

231282@vut.cz

2nd Petr Dzurenda
Department of Telecommunications

Brno University of Technology

Brno, Czech Republic

0000-0002-4366-3950

Abstract—The cybersecurity job market is growing rapidly,
with a great demand for cybersecurity professionals. Currently,
there are many cybersecurity curricula, professional training, and
certication schemes that have been created recently, however,
they are independent of each other and without any synchro-
nization. The recently released European Cybersecurity Skills
Framework (ECSF) aims to bring order to this area. This
article builds on the work of the European Union Agency for
Cybersecurity (ENISA) and extends it with a practical tool that
allows professionals to create their desired ENISA cybersecurity
proles. The core of our tool uses a Linear Programming
(LP) algorithm to help professionals to nd the most suitable
combinations of professional training courses to follow in order to
achieve their required ENISA proles. Our experimental results
show the efciency of our implementation, in terms of the speed
of nding a solution for different LP solver libraries.

Index Terms—ENISA, ECSF, Cybersecurity Skills Framework,
Cybersecurity, Cybersecurity Prole, Linear Programming, Sim-
plex Algorithm

I. INTRODUCTION

Because of the expanding demand for cybersecurity pro-

fessionals on the European, but also the worldwide market,

new cybersecurity terms, roles, and skills are being created

and named. However, these names are often quite different.

This can bring confusion and misunderstanding about what

should be taught in professional courses and what is actually

required by the job market. Therefore, ENISA undertook to

solve this problem and created the ECSF that unies the terms

used in this specialization [1]. Taking this into account, the

Cybersecurity Skills Alliance - A New Vision for Europe

(REWIRE) project, created a connection between ECSF skills

and knowledge and REWIRE cybersecurity competencies.

These REWIRE competencies are then linked back to ENISA

proles. With this methodology, it is possible to map existing

university curricula, professional training, and certication

courses to ECSF. Furthermore, the REWIRE project designed

a web application called Cybersecurity Proler (CSP) which

can serve people in this eld, as it includes courses all over

Europe and multiple tools, which can help with creating a

university curriculum, professional training and certication

courses, and understanding requirements for fullling job

roles. We refer to [2] for more details.

A. Contribution and Paper Structure

This paper focus on our design, implementation, and ex-

perimental tests of the computing core of the CSP application

allowing identifying which courses, training, and certication

courses are recommended for a certain work role.

Section II describes the fundamental knowledge required for

understanding the problem. Section III presents the target of

the module, which is to assemble courses in such a combina-

tion, which fullls parameters set by the user of the application

and match with the chosen prole. Details of implemented

libraries and code structure are presented as well. Section IV

is dedicated to testing and experiments with different Linear

Programming (LP) solver libraries, so that the best library can

be selected by setting criteria relevant to this work.

II. PRELIMINARIES

In this section, we describe the ECSF to foreshadow its

connection to created CSP application. Furthermore, linear

programming and its branch, the simplex algorithm is intro-

duced as the most prominent option for solving the problem

of nding combinations from available courses.

A. European Cybersecurity Skills Framework (ECSF)

The ENISA has summarized knowledge, and skills in the

eld of cybersecurity into twelve proles [1]. Classication

as this gives options not only to individuals seeking proper

education but also allows organizations to specify which

professions they need and simultaneously training providers

can use the same terms to offer their services. Unifying terms

in this market will help this area to grow and hopefully provide

better conditions for people to become professionals. More

experts are required to protect critical infrastructure, privacy

and similar vulnerabilities that arise.

Project REWIRE followed up on this work and included

skill groups in the created proles, that reect which skills

need to be mastered to fulll the prole. Skill groups consist

of more detailed skills and knowledge.

B. Integer Linear Programming and Simplex Algorithm

Linear programming is a mathematical discipline that targets

nding the best outcome. The objective has to be nding the

maximum or minimum of a function. The algorithm aims

108



to nd the maximum or minimum of the objective function

while respecting the given constraints, see [3] for more details.

The simplex [4] is a standard algorithm often used because it

is simple and widespread. Simplex uses bounds to establish

feasible region. The boundaries are then traveled along the

edges until the optimum of function is reached. This method

always presents global optimum if precautions against cycling

are applied.

C. Solving packages for ILP

Solvers use different approaches or techniques to compute

the solutions of a problem. As each solver usually allows to

solve a vast number of different problems, choosing the proper

solver can make a relevant difference in performance. It must

be clear that solving a problem just by using the simplex

method cannot fulll all types of tasks, and Mixed Integer

Programming (MIP) is proof of that [4]. Some problems

include values that are required to be binary but the simplex

method will produce a best global solution which might not

be an integer value. Here the solver has to use its methods to

nd a solution with integer values. This can be achieved for

example by Branch-and-Cut algorithm [5].

The algorithm works as follows, the rst step is creating

bounds, if the desired outcome is an integer and a continuous

number is produced instead, then bounds are created around

the value. For example, if the produced number is 4.6 which

is not an integer, then the next step is to create a lower bound

that would be 4.0 and an upper bound of 5.0. This creates

two new constraints which are included for the simplex. Two

calculations are performed with bounds appended separately

and if solutions consisting of integers are found, then the better

of these solutions is considered optimal. Another case is when

this does not produce an integer, then branching occurs and

similar bounds are set again and calculation is performed on

them until a feasible solution is found and considered optimal

compared to other integer solutions generated by different

branches.

III. CYBERSECURITY PROFILE DESIGNER

The objective for this section is to give a detail description

of the module designed for web application. The rst subsec-

tion describes how the module was designed into detail. Then

in next subsection some terms and details about possibilities

of external libraries and packages are explained.

A. CSP Search Problem Formulation

First, it is important to outline the problem that needs to be

solved. There are 59 courses included in the set at the time.

The user can choose a prole that interests him. Proles and

trainings consist of skill groups. Algorithm has to match the

trainings to chosen prole so that all skill groups included in

the prole are represented by trainings. Because single training

cannot fulll this, multiple trainings have to be put together

to achieve possible combinations. The found solution has to

consist of the best available courses that match the prole and

the selected parameters set up by the user. It is also essential

to get an optimal solution in the shortest possible time. The

ltering applied by the user includes important numerical

values as price, duration, and included skills of the courses.

These values together with a number of courses demanded

in the solution are subjected to optimization so that the best

possible outcome is found. To achieve this, extensive analysis

had to be conducted and multiple possibilities were discovered.

Between the most promising had ranked LP that on its own

offers multiple algorithms and Genetic algorithms (GA) [4].

Regarding GA there are multiple red ags, to begin with.

Among the biggest ones ranks the uncertainty that an optimal

solution will be found, i.e., the algorithm does not always

nish at a globally optimal solution, as in our case, where the

nal demanded state is not outlined to the algorithm. Another

issue worth mentioning is the deviation time from nding each

solution.

On the contrary, LP does not have to deal with these

fundamental problems, because solving a problem with them is

basically following mathematical instructions that lead towards

an optimal solution and thus the result is always the same

as the same approach is repeated. Unfortunately, there is a

problem associated with this. The solution produced by the

mathematical approach cannot guarantee that the result will

contain whole numbers which are relevant to this work. This

problem is solved with the help of solver packages, which will

be discussed in more detail in Section III.

B. Application Design

The application currently operates only in python. Data are

drawn from JSON local les. After data are extracted from

les, they are ltered based on criteria like the language in

which are the lessons conducted or the country from which

they originate. Another criterion is whether the course ends

with certication and also whether it is conducted online,

face to face, or both. All mentioned lter settings including

mentioned price, duration and mainly chosen prole/s are set

up by a user.

The process of optimization then comes into place. Firstly,

the target of optimization is acquired, this is statically set for

minimization as the objective is to minimize price, duration,

and number of included courses. These are values that the

solver calculates with. Then variables are created. In this case,

variables are courses themselves and they are represented by

either one or zero, depending on whether they will be included

(1) or excluded (0). That is determined by calculations. Fur-

ther, the objective function is dened together with constraints

and bounds, including the ltering values.

The objective function is presented mathematically in Equa-

tion 1, where Smin is a minimization of the objective function.

Here pri stands for price and is added together with dui
which

represents duration. Both of the values are multiplied by bi
which represents a binary variable deciding whether the course

will be included or not.

Smin =
M

i=0

[(pribi) + (dui
bi)] +

M

i=0

bi (1)

109



While requiredAmount !=0

No first solution?

True

False

No solution?

True
Remove used

courses

requiredAmount

-1

Solve No solution?

True

False

requiredAmount

+1

False

START

No

solution=False

END

Gradually

append courses

from solutions.

Solve

Courses depleted

or

requiredAmount=0

False

True

Fig. 1. Decision loop of application

The following equations describe the constraint functions

that are applied to create the feasible region and by this

fulll the requirements. The Pmin and Pmax values dened

in equation (2) refer to the price range in which the sum of

the courses must move. In the equation (3), the duration limits

of the selected courses are determined in the sum.

M

i=0

(pribi) ≥ Pmin

M

i=0

(pribi) ≤ Pmax (2)

M

i=0

(dui
bi) ≥ Dmin

M

i=0

(dui
bi) ≤ Dmax (3)

The constraint given in the equation (4) on the left determines

the maximum number of courses included in the solution. On

the right side, s indicates the knowledge groups included in

the selected courses. The groups in the selected Prof prole

must be included in the course group, and s can also contain

redundant courses.

M

i=0

bi ≤ Cmax

M

i=0

(s bi) ≥ Prof (4)

The decision loop is the last part of the application. As the

user has the option to demand multiple solutions, the loop is

required to fulll settings if possible. The logic of the whole

process is displayed in gure 1. In short, decisions are based

on multiple factors as whether the rst solution was acquired,

if the answer is yes, then the cycle repeats. This time if no

solution is produced secondary loop is triggered and already

used courses, are extracted from the solution list and are

appended gradually back to the set used by solving algorithm.

This allows the algorithm to nd different combinations and

terminate itself after all courses from the solution set are

depleted. In the opposite case, where the solution was found

again, the rst cycle repeats itself until it eventually falls into

the second loop as well or it runs out of required solutions

rst.

C. Implementation Details

The application is implemented in Python 3.9.7 program-

ming language.

The choice is due to the wide support of optimization

libraries. Regarding different libraries on which whole math-

ematical functions are based, it offers three most popular

packages: Pyomo [6], Scipy [7], and Pulp [8]. Each library

uses different syntax to achieve similar functions and they also

bring unique functionalities. On their own, these libraries only

offer a bridge between the mathematical format and the actual

solver itself. What it does, is that it processes given input and

relays data in a specic format to the chosen solver.

Scipy [7] is a well-supported module by the community but

not by many solving packages. Another disadvantage is its

input format acceptability. Scipy cannot work with dictionaries

and only calculates with two-dimensional matrix input.

Probably the most widespread is Pyomo [6] library which

includes slightly more additional functions like non-linear

optimization and can even perform calculations with object-

oriented models. Unlike Scipy, Pyomo also allows to presen-

tation of the input data directly from databases, dictionaries,

or tables. The repertoire of solver packages is similar to that

of Pulp and their syntax is also somewhat similar.

Pulp [8] supports a wide amount of solver packages and also

allows binary optimization which is crucial for this article.

Besides that mixed integer programming is supported. Pulp

has of all libraries easiest problem implementation and with

that also comes a very short booting time when the solver

is initialized. Pulp is the chosen library for this project and

is currently in use together with multiple solvers. The main

solver in use is currently CBC (Coin-or branch and cut) [5],

but tests were conducted as well with HiGHS [9] and GLPK

[10]. We tested all these three solvers in our work. To do so,

we use the pulp library as it provides linking and data transfer

to individual packages. All discussed solvers are open-source.

Multiple commercial solvers would probably outperform all

three of those presented, but no tests were conducted on

them since we are aiming to implement and release the CSP

application under an open source software license.

110



IV. EXPERIMENTAL RESULTS

In this section, the solver packages, which are potentially

candidates for our use in the CSP application, were subjected

to testing on the used data sets. The results are summarized

in this section and are displayed in Figure 2.

Solver CBC is the default package for Pulp and can be

used with Pyomo as well [5]. For MIP problems is applied

branch-and-cut algorithm which was discussed at the end of

section III. Pulp had previously used GLPK as the default

solver, but it was replaced by CBC due to better performance.

Another solving package is HiGHS which is still in early

development but offers promising results [11]. In addition to

MIP, it also allows for solving quadratic programming models

and everything can be solved either in series or in parallel.

Figure 2 shows that tests were conducted on two sets

represented by 44 and 59 solvers on horizontal axis and time in

seconds on vertical axis. The reason why a solution was found

faster in a larger set is that fewer infeasible solutions were

computed because there were more courses to choose from.

Requested amount of combinations was three, but as it was

more difcult to achieve this with less courses, actual number

of computations was around nine. In contrast with a larger

set it was only three, which was demanded. It is important to

note that the data on the HiGHS package is not very accurate.

There was a relatively frequent failure in the calculation, which

was manifested in up to 36.84 % of cases in the rst set and

around 16.6 % in the second set. If we ignore this, HiGHS

does have the best performance, but probably because it is

still under development. It has frequent crashes that make it

impossible to use this package normally [9]. Despite this, the

HIGHS package proved to be the fastest, beating CBC by a

hundred milliseconds at the most distinct point. Both solving

packages far outperformed GLPK. This, and also its reliability

is the reason why CBC was deployed as a solution package.

Also GLPK allows only fairly short variable names, and along

with HiGHS, have problems with special characters in them.

During tests, average memory usage was around 73,5 MB

and GPU usage moved between 3,5 % – 6,7 % on Intel Core

i5-6400 processor.

CBC GLPK HiGHS
0

0.5

1

1.5

2

1.24

1.87

1.12

0.55
0.71

0.5

T
im

e
[m

s]

Set of 44 courses

Set of 59 courses

Fig. 2. Performance comparison of different ILP solver libraries

V. CONCLUSION

In this paper, we design, implement, and experimentally test

the CSP application computing core. This core allows for iden-

tifying which professional training courses are recommended

for a certain work role. Methods used for achieving desired

results have proven to be efcient and remarkably quick.Linear

programming with the simplex algorithm is largely used in

different libraries allowing a comparison of their features.

The Pulp library was fully compatible with the data format,

and broad solver support enabled concurrent testing with

promising results supporting the choice to deploy CBC in the

nal version of the application. The decision cycle seems to

be sufcient but could provide more complex decisions in the

future. Fundamental requirements for the module were met as

it can match courses to proles based on skill groups. There is

room for improvement in the future in terms of more accurate

matching. Scales could be implemented to properly display

the value of each course and not to consider them all equal in

terms of usefulness. More precise searching could be deployed

as well because each course contains individual skills and

knowledge which are not represented by skill groups in detail.

ACKNOWLEDGMENT

The following funding source is gratefully acknowledged:

the ERASMUS+ programme of the European Union (grant

621701-EPP-1-2020-1-LT-EPPKA2-SSA-B ’REWIRE’).

REFERENCES

[1] European cybersecurity skills framework [online]. Accessed
2022-12-09. URL: https://www.enisa.europa.eu/topics/education/
european-cybersecurity-skills-framework.

[2] Petr Dzurenda and Sara Ricci. Mapping the framework to existing
courses and schemes [online]. Accessed 2022-12-01. URL:
https://rewireproject.eu/wp-content/uploads/2022/11/REWIRE R3.
4.1 Deliverable-v7-Final.pdf.

[3] Kazuo Murota. Linear programming. In Computer Vision, pages 760–
766. Springer, 2021.

[4] S. Skiena Steve. In The Algorithm Design Manual, volume 2, pages
266–414. London: Springer London, 2008.

[5] John Forrest. Introduction to cbc [online]. Accessed 2022-11-16. URL:
https://coin-or.github.io/Cbc/intro.

[6] William Hart and Jean-Paul Watson. Pyomo model documentation
[online]. Accessed 2022-11-25. URL: https://pyomo.readthedocs.io/en/
stable.

[7] Eric Jones, Pearu Peterson, and Travis Oliphant. Scipy model documen-
tation [online]. Accessed 2022-11-25. URL: https://docs.scipy.org/doc/
scipy/dev/index.html#scipy-development.

[8] J.S. Roy, S.A. Mitchell, and F. Peschiera. Pulp model documentation
[online]. Accessed 2022-11-13. URL: https://coin-or.github.io/pulp.

[9] Julian Hall, Ivet Galabova, and Michael Feldmeier. Highs package
documentation [online]. Accessed 2022-11-24. URL: https://ergo-code.
github.io/HiGHS/.

[10] Andrew O. Makhorin. Glpk - the gnu linear programming kit [online].
Accessed 2023-03-08. URL: https://www.gnu.org/software/glpk/glpk.
html.

[11] Maximilian Parzen, Julian Hall, Jesse Jenkins, and Tom Brown. Op-
timization solvers: the missing link for a fully open- source energy
system modelling ecosystem [online]. Accessed 2022-11-18. URL:
https://zenodo.org/record/6534004.

111


